
Database – A Brief Introduction

I. Basic Definitions

A **database** is a collection of data that is stored in a computer system. The software that manages the data is known as a database management system or **DBMS**. Suppose I wished to collect information about students in my class. First I would have to decide on which items I wished to store. I might choose such items as *firstname*, *lastname*, *age*, *major* and so on. These elementary items are known as **fields**. The complete set of information for each student is called a **record**, while the complete set of records for the entire class is known as a **file**. Each record represents the information on a single student. While each record consists of the same fields, obviously the information contained in those fields will be different. A field which is left empty is known as **null field** (e.g., *middleintial*, for students who do not have a middle name.) The choice of fields requires careful study of the purpose for which we are collecting information and is both an art and a science.

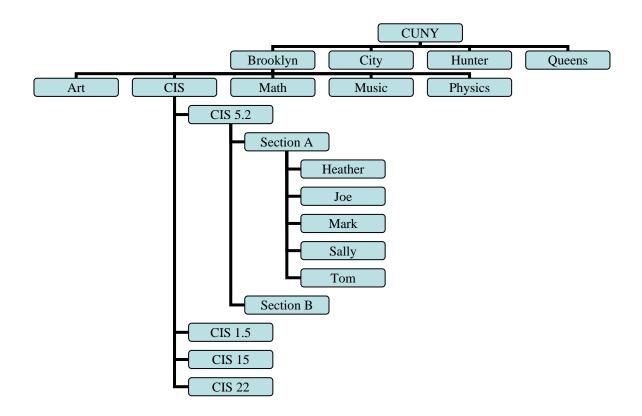
Of course, I am not the only one in the college who maintains information on the students in my class; the Registrar has their own files consisting of student academic records; the Bursar maintains a file of financial information; and the Nurse maintains yet another file. Each file contains different records on each student, yet taken together the three files represent all the information that is maintained on the students in the college. The collection of files is known as a database.

Thus a database is a collection of files, which in turn is a collection of records; each record is a collection of fields.

Each record in the database is identified by a **key.** Keys may be distinguished on the basis of whether they are **unique** (e.g., a student id) or **non-unique** (e.g., zip codes). Keys are often fields in a record, or they may be created arbitrarily (such as a magazine subscription code which consists of one or more characters of your name, address and expiration date.)

Keys may also be distinguished by whether they are designated as **primary keys** or **secondary keys**. A primary key is used to represent the **physical ordering** of the records in the file. For example, the Library of Congress Number is used to arrange the books in a library. Often however, we wish to access our records in a different order than their physical arrangement. It is convenient to imagine that the books are ordered by author, or perhaps by subject. We use an **index** to provide us with a method of accessing the books in other than their physical organization. The key used to determine the **virtual order** of the books is known as a secondary key. In our example, the library of congress number is the primary key, while author and subject would be the secondary keys.

Physically rearranging the records is known as **sorting** and, for large files, is quite time consuming. Creating the indexes by which we wish to **search** our database is known as

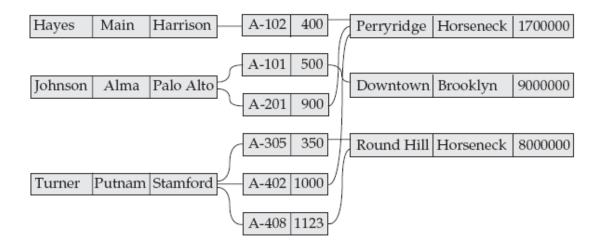

indexing. One of the important functions of a database management system is the creation of one or more indexes; providing us with the flexibility of searching our database by multiple criteria.

II. Database models¹

A database model defines how the items in the database are related to each other. Several different methods for the organization of the information in the database have been defined. Each of these models has both advantages and disadvantages which are beyond the scope of this class. We will briefly review three of these methods.

a. Hierarchical model

In a hierarchical data model, data is organized into a tree-like structure. The structure allows repeating information using parent/child relationships: each parent can have many children but each child only has one parent.



¹ Wikipedia

b. Network Model

The network model is a database model conceived as a flexible way of representing objects and their relationships. The network model allows each record to have multiple parent and child records, forming a lattice structure.

In the following example the diagram represents the relationship of account holders (name, street, and city), bank accounts (account number, balance) and bank branch (branch name, branch city, assets). Note that an account holder may own one or more accounts at one or more branches.

c. Relational Model

The basic data structure of the relational model can be thought of as a table, where information about a particular entity (say, a student) is represented in columns and rows. Each column represents a field and each row represents a record. Multiple tables (files) are related to each other by keys which they share in common. Any value occurring in two different records belonging to different tables implies a relationship among those two records.

The relational model may also be viewed as a mathematical construct that defines the form of the data within it and which must conform to some basic rules. These rules enforce **database integrity** (a method of ensuring that changes made to the database by authorized users do not result in a loss of data consistency) and define the operations that may be performed on it. A technique called **database normalization** may be used to optimally organize the tables in the database. These techniques lie outside the scope of this course and are covered in detail in CIS 45.

In the following example I will illustrate the relational model for a University Scheduling database that has been implemented using Microsoft Access.

III. Microsoft Access

Microsoft Access is a *Relational Database Management System* or **RDBMS** that provides a user interface and interactive design capabilities (including wizards) to help you track and report information with ease. It includes many prebuilt applications that you can modify or adapt to changing business needs. You enter the information through forms and create and edit detailed reports that display sorted, filtered, and grouped information in a way that helps you make sense of the data for informed decision-making.

The University Database defines four tables:

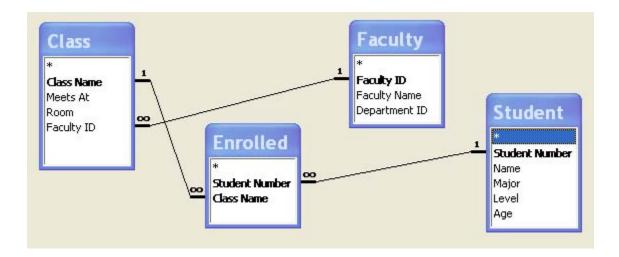
a. **Class** – which contains scheduling information for the classes offered at the university

		Class Name	Meets At	Room	Faculty ID
	+	Air Quality Engineering	TuTh 10:30-11:45	R15	115648
	+	American Political Parties	TuTh 2-3:15	20 AVW	6190235
	+	Archaeology of the Incas	MWF 3-4:15	R128	2489652
	+	Artificial Intelligence		UP328	
	+	Aviation Accident Investigation	TuTh 1-2:50	Q3	115648
	+	Communication Networks	MVV 9:30-10:45	20 AVW	1415826
	+	Dairy Herd Management	TuTh 12:30-1:45	R128	3561879
	+	Data Structures	MWF 10	R128	4894565
	+	Database Systems	MWF 12:30-1:45	1320 DCL	1425198
	+	Intoduction to Math	TuTh 8-9:30	R128	4892218
	+	Introductory Latin	MWF 3-4:15	R12	2489652
	+	Marketing Research	MW 10-11:15	1320 DCL	4892218
	+	Multivariate Analysis	TuTh 2-3:15	R15	908735
	+	Operating System Design	TuTh 12-1:20	20 AVW	4894565
	+	Optical Electronics	TuTh 12:30-1:45	R15	2540998
	+	Orbital Mechanics	MWF 8	1320 DCL	115648
	+	Organic Chemistry	TuTh 12:30-1:45	R12	4892218
	+	Patent Law	F 1-2:50	R128	908735
	+	Perception	MTuWTh 3	Q3	4892218
	+	Psychology			6190235
	+	Seminar in American Art	M 4	R15	4892218
	+	Social Cognition	Tu 6:30-8:40	R15	1595425
	+	Urban Economics	MWF 11	20 AVW	4892218
÷	1				

	Enrolled : Ta	ble 🔲 🗖 🔀	
	Student Number	Class Name	
►	99354543	Patent Law	
	112348546	Database Systems	
	112348546	Operating System Design	
	115987938	Database Systems	
	115987938	Operating System Design	
	301221823	American Political Parties	
	301221823	Perception	
	301221823	Social Cognition	
	322654189	Database Systems	
	322654189	Operating System Design	
	348121549	Database Systems	
		Operating System Design	
		Optical Electronics	
		Organic Chemistry	
		Communication Networks	
	552455318	Database Systems	
		Operating System Design	
		Air Quality Engineering	
		Data Structures	
		Operating System Design	
	574489456	Urban Economics	
*			
R	ecord: 🚺 🔳	1 🕨 🕨 🔭 of 21	

b. **Enrolled** – which contains the students who are enrolled in each class

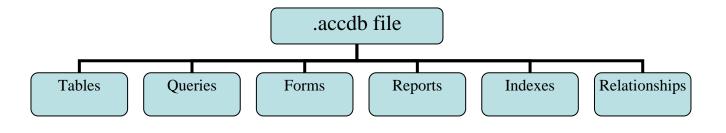
c.	Faculty – which contains information regarding the faculty of the
	university


	🗉 Faculty : Table 📃 🗖 🔀			
		Faculty ID	Faculty Name	Department ID
	+	11564812	John Williams	68
	+	90873519	Elizabeth Taylor	11
	+	141582651	Mary Johnson	20
	+	142519864	I. Teach	20
	+	159542516	William Moore	33
	▪ 242518965 James Smith		68	
	+	+ 248965255 Barbara Wilson		12
	+	254099823	Patricia Jones	68
	+	287321212	Michael Miller	12
	+	356187925	Robert Brown	12
	+	486512566 David Anderson		20
			33	
	▪ 489456522 Linda Davis		20	
	+	548977562	Ulysses Teach	20
	+	619023588	Jennifer Thomas	11
*				
Re	eco	rd: 🚺 🔳	1	• 米 of 15

d.	Student – which contains information regarding the students enrolled in
	the university

	Student Nur	Name	Major	Level	Age
+	51135593	Maria White	English	SR	1
+	60839453	Charles Harris	Architecture	SR	
+	99354543	Susan Martin	Law	JR	
+	112348546	Joseph Thompson	Computer Science	SO	-
+	115987938	Christopher Garcia	Computer Science	JR	1
+	132977562	Angela Martinez	History	SR	
+	269734834	Thomas Robinson	Psychology	SO	
+	280158572	Margaret Clark	Animal Science	FR	
+		Juan Rodriguez	Psychology	JR	
+	318548912	Dorthy Lewis	Finance	FR	
+	320874981	Daniel Lee	Electrical Engineering	FR	
+	322654189	Lisa Walker	Computer Science	SO	
+	348121549	Paul Hall	Computer Science	JR	
+	351565322	Nancy Allen	Accounting	JR	
+	451519864	Mark Young	Finance	FR	
+	455798411	Luis Hernandez	Electrical Engineering	FR	
+	462156489	Donald King	Mechanical Engineering	SO	
+	550156548	George Wright	Education	SR	
+	552455318	Ana Lopez	Computer Engineering	SR	
+		Kenneth Hill	Civil Engineering	SR	1
+	567354612	Karen Scott	Computer Engineering	FR	
+	573284895	Steven Green	Kinesiology	SO	
+	574489456	Betty Adams	Economics	JR	1
+		Edward Baker	Veterinary Medicine	SR	1

Note that the columns in each table represent the fields and the rows represent the records.


The tables are related to each other using the key fields as shown below. These relationships may be **one-to-one**, **one-to-many**, **many-to-one**, or **many to many**. In the diagram below, the '1— ∞ ' represents a one-to-many relationship, while the ' ∞ —1' represents a many-to-one relationship. Make sure you understand these relationships.

Using the techniques described in our textbook you will learn how to define tables and the relationships that they describe. Once the tables have been created, you will then learn how to enter data, and produce simple reports. Advanced techniques that we will cover include the creation of **forms** for the input of data, **queries** which will enable us to extract data according to specific criteria and, the design of elegant **reports** (including mailing labels and envelopes) by which these results may be presented.

At this point, it is useful to distinguish between the **physical organization** of the database and its **virtual organization** or view by which the user experiences its organization. The designer of the database is aware of its physical organization (i.e. the tables and the relationships between them). The user of that database however, does not need to understand the database's underlying organization, Rather, the user needs to be retrieve the information he or she requires as simply as possible. Different users have different needs. Security and privacy concerns may require that some of the data be hidden from unauthorized users. Using a saved query it is possible to extract information from one or more tables and to present the results in one or more a virtual tables. Each query then provides the user with a different 'view' of the database that is appropriate for its user.

All the information in the database is stored in a single Microsoft Access file having the .accdb extension. This file gathers up in one location the components of the database as shown below:

